Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.853
Filtrar
1.
Int J Med Educ ; 15: 37-43, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38581237

RESUMO

Methods:   A pilot randomized controlled trial was conducted at our institution's simulation center with 32 first year medical students from a single medical institution. Participants were randomly divided into two equal groups and completed an educational module the identification and pathophysiology of five common cardiac sounds. The control group utilized traditional education methods, while the interventional group incorporated multisensory stimuli. Afterwards, participants listened to randomly selected cardiac sounds and competency data was collected through a multiple-choice post-assessment in both groups. Mann-Whitney U test was used to analyze the data. Results: Data were analyzed using the Mann-Whitney U test. Diagnostic accuracy was significantly higher in the multisensory group (Mdn=100%) compared to the control group (Mdn=60%) on the post-assessment (U=73.5, p<0.042). Likewise, knowledge acquisition was substantially better in the multisensory group (Mdn=80%) than in the control group (Mdn=50%) (U= 49, p<0.031). Conclusions: These findings suggest the incorporation of multisensory stimuli significantly improves cardiac auscultation competency. Given its cost-effectiveness and simplicity, this approach offers a viable alternative to more expensive simulation technologies like the Harvey simulator, particularly in settings with limited resources. Consequently, this teaching modality holds promise for global applicability, addressing the worldwide deterioration in cardiac auscultation skills and potentially leading to better patient outcomes. Future studies should broaden the sample size, span multiple institutions, and investigate long-term retention rates.


Assuntos
Ruídos Cardíacos , Estudantes de Medicina , Humanos , Auscultação Cardíaca , Competência Clínica , Ruídos Cardíacos/fisiologia , Avaliação Educacional/métodos
2.
Sci Rep ; 14(1): 7592, 2024 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-38555390

RESUMO

Traditionally, heart murmurs are diagnosed through cardiac auscultation, which requires specialized training and experience. The purpose of this study is to predict patients' clinical outcomes (normal or abnormal) and identify the presence or absence of heart murmurs using phonocardiograms (PCGs) obtained at different auscultation points. A semi-supervised model tailored to PCG classification is introduced in this study, with the goal of improving performance using time-frequency deep features. The study begins by investigating the behavior of PCGs in the time-frequency domain, utilizing the Stockwell transform to convert the PCG signal into two-dimensional time-frequency maps (TFMs). A deep network named AlexNet is then used to derive deep feature sets from these TFMs. In feature reduction, redundancy is eliminated and the number of deep features is reduced to streamline the feature set. The effectiveness of the extracted features is evaluated using three different classifiers using the CinC/Physionet challenge 2022 dataset. For Task I, which focuses on heart murmur detection, the proposed approach achieved an average accuracy of 93%, sensitivity of 91%, and F1-score of 91%. According to Task II of the CinC/Physionet challenge 2022, the approach showed a clinical outcome cost of 5290, exceeding the benchmark set by leading methods in the challenge.


Assuntos
Algoritmos , Processamento de Sinais Assistido por Computador , Humanos , Fonocardiografia/métodos , Sopros Cardíacos/diagnóstico , Auscultação Cardíaca
3.
Sensors (Basel) ; 24(5)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38475062

RESUMO

Cardiac auscultation is an essential part of physical examination and plays a key role in the early diagnosis of many cardiovascular diseases. The analysis of phonocardiography (PCG) recordings is generally based on the recognition of the main heart sounds, i.e., S1 and S2, which is not a trivial task. This study proposes a method for an accurate recognition and localization of heart sounds in Forcecardiography (FCG) recordings. FCG is a novel technique able to measure subsonic vibrations and sounds via small force sensors placed onto a subject's thorax, allowing continuous cardio-respiratory monitoring. In this study, a template-matching technique based on normalized cross-correlation was used to automatically recognize heart sounds in FCG signals recorded from six healthy subjects at rest. Distinct templates were manually selected from each FCG recording and used to separately localize S1 and S2 sounds, as well as S1-S2 pairs. A simultaneously recorded electrocardiography (ECG) trace was used for performance evaluation. The results show that the template matching approach proved capable of separately classifying S1 and S2 sounds in more than 96% of all heartbeats. Linear regression, correlation, and Bland-Altman analyses showed that inter-beat intervals were estimated with high accuracy. Indeed, the estimation error was confined within 10 ms, with negligible impact on heart rate estimation. Heart rate variability (HRV) indices were also computed and turned out to be almost comparable with those obtained from ECG. The preliminary yet encouraging results of this study suggest that the template matching approach based on normalized cross-correlation allows very accurate heart sounds localization and inter-beat intervals estimation.


Assuntos
Ruídos Cardíacos , Humanos , Ruídos Cardíacos/fisiologia , Fonocardiografia , Coração/fisiologia , Auscultação Cardíaca , Eletrocardiografia , Frequência Cardíaca
4.
IEEE J Biomed Health Inform ; 28(4): 1803-1814, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38261492

RESUMO

One in every four newborns suffers from congenital heart disease (CHD) that causes defects in the heart structure. The current gold-standard assessment technique, echocardiography, causes delays in the diagnosis owing to the need for experts who vary markedly in their ability to detect and interpret pathological patterns. Moreover, echo is still causing cost difficulties for low- and middle-income countries. Here, we developed a deep learning-based attention transformer model to automate the detection of heart murmurs caused by CHD at an early stage of life using cost-effective and widely available phonocardiography (PCG). PCG recordings were obtained from 942 young patients at four major auscultation locations, including the aortic valve (AV), mitral valve (MV), pulmonary valve (PV), and tricuspid valve (TV), and they were annotated by experts as absent, present, or unknown murmurs. A transformation to wavelet features was performed to reduce the dimensionality before the deep learning stage for inferring the medical condition. The performance was validated through 10-fold cross-validation and yielded an average accuracy and sensitivity of 90.23 % and 72.41 %, respectively. The accuracy of discriminating between murmurs' absence and presence reached 76.10 % when evaluated on unseen data. The model had accuracies of 70 %, 88 %, and 86 % in predicting murmur presence in infants, children, and adolescents, respectively. The interpretation of the model revealed proper discrimination between the learned attributes, and AV channel was found important (score 0.75) for the murmur absence predictions while MV and TV were more important for murmur presence predictions. The findings potentiate deep learning as a powerful front-line tool for inferring CHD status in PCG recordings leveraging early detection of heart anomalies in young people. It is suggested as a tool that can be used independently from high-cost machinery or expert assessment.


Assuntos
Aprendizado Profundo , Cardiopatias Congênitas , Adolescente , Criança , Humanos , Recém-Nascido , Auscultação Cardíaca , Sopros Cardíacos/diagnóstico por imagem , Sopros Cardíacos/etiologia , Fonocardiografia , Auscultação , Cardiopatias Congênitas/complicações , Cardiopatias Congênitas/diagnóstico
5.
J Cardiol ; 83(4): 265-271, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37734656

RESUMO

In the aging global society, heart failure and valvular heart diseases, including aortic stenosis, are affecting millions of people and healthcare systems worldwide. Although the number of effective treatment options has increased in recent years, the lack of effective screening methods is provoking continued high mortality and rehospitalization rates. Appropriately, auscultation has been the primary option for screening such patients, however, challenges arise due to the variability in auscultation skills, the objectivity of the clinical method, and the presence of sounds inaudible to the human ear. To address challenges associated with the current approach towards auscultation, the hardware of Super StethoScope was developed. This paper is composed of (1) a background literature review of bioacoustic research regarding heart disease detection, (2) an introduction of our approach to heart sound research and development of Super StethoScope, (3) a discussion of the application of remote auscultation to telemedicine, and (4) results of a market needs survey on traditional and remote auscultation. Heart sounds and murmurs, if collected properly, have been shown to closely represent heart disease characteristics. Correspondingly, the main characteristics of Super StethoScope include: (1) simultaneous collection of electrocardiographic and heart sound for the detection of heart rate variability, (2) optimized signal-to-noise ratio in the audible frequency bands, and (3) acquisition of heart sounds including the inaudible frequency ranges. Due to the ability to visualize the data, the device is able to provide quantitative results without disturbance by sound quality alterations during remote auscultations. An online survey of 3648 doctors confirmed that auscultation is the common examination method used in today's clinical practice and revealed that artificial intelligence-based heart sound analysis systems are expected to be integrated into clinicians' practices. Super StethoScope would open new horizons for heart sound research and telemedicine.


Assuntos
Cardiopatias , Ruídos Cardíacos , Estetoscópios , Humanos , Ruídos Cardíacos/fisiologia , Inteligência Artificial , Auscultação , Auscultação Cardíaca/métodos
6.
Artigo em Inglês | MEDLINE | ID: mdl-38083243

RESUMO

Cardiovascular disease, particularly Rheumatic Heart Disease (RHD), is one of the leading causes of death in many developing countries. RHD is manageable and treatable with early detection. However, multiple countries across the globe suffer from a scarcity of experienced physicians who can perform screening at large scales. Advancements in machine learning and signal processing have paved way for Phonocardiogram (PCG)-based automatic heart sound classification. The direct implication of such methods is that it is possible to enable a person without specialized training to detect potential cardiac conditions with just a digital stethoscope. Hospitalization or life-threatening situations can be dramatically reduced via such early screenings. Towards this, we conducted a case study amongst a population from a particular geography using machine learning and deep learning methods for the detection of murmur in heart sounds. The methodology consists of first pre-processing and identifying normal vs. abnormal heart sound signals using 3 state-of-the-art methods. The second step further identifies the murmur to be systolic or diastolic by capturing the auscultation location. Abnormal findings are then sent for early attention of clinicians for proper diagnosis. The case study investigates the efficacy of the automated method employed for early screening of potential RHD and initial encouraging results of the study are presented.


Assuntos
Cardiopatias , Ruídos Cardíacos , Humanos , Algoritmos , Sopros Cardíacos/diagnóstico , Auscultação Cardíaca
7.
Artigo em Inglês | MEDLINE | ID: mdl-38083307

RESUMO

Cardiovascular diseases (CVDs) are the leading cause of death globally. Heart sound signal analysis plays an important role in clinical detection and physical examination of CVDs. In recent years, auxiliary diagnosis technology of CVDs based on the detection of heart sound signals has become a research hotspot. The detection of abnormal heart sounds can provide important clinical information to help doctors diagnose and treat heart disease. We propose a new set of fractal features - fractal dimension (FD) - as the representation for classification and a Support Vector Machine (SVM) as the classification model. The whole process of the method includes cutting heart sounds, feature extraction, and classification of abnormal heart sounds. We compare the classification results of the heart sound waveform (time domain) and the spectrum (frequency domain) based on fractal features. Finally, according to the better classification results, we choose the fractal features that are most conducive for classification to obtain better classification performance. The features we propose outperform the widely used features significantly (p < .05 by one-tailed z-test) with a much lower dimension.Clinical relevance-The heart sound classification model based on fractal provides a new time-frequency analysis method for heart sound signals. A new effective mechanism is proposed to explore the relationship between the heart sound acoustic properties and the pathology of CVDs. As a non-invasive diagnostic method, this work could supply an idea for the preliminary screening of cardiac abnormalities through heart sounds.


Assuntos
Doenças Cardiovasculares , Cardiopatias , Ruídos Cardíacos , Humanos , Fractais , Auscultação Cardíaca
8.
J Am Heart Assoc ; 12(20): e030377, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37830333

RESUMO

Background The success of cardiac auscultation varies widely among medical professionals, which can lead to missed treatments for structural heart disease. Applying machine learning to cardiac auscultation could address this problem, but despite recent interest, few algorithms have been brought to clinical practice. We evaluated a novel suite of Food and Drug Administration-cleared algorithms trained via deep learning on >15 000 heart sound recordings. Methods and Results We validated the algorithms on a data set of 2375 recordings from 615 unique subjects. This data set was collected in real clinical environments using commercially available digital stethoscopes, annotated by board-certified cardiologists, and paired with echocardiograms as the gold standard. To model the algorithm in clinical practice, we compared its performance against 10 clinicians on a subset of the validation database. Our algorithm reliably detected structural murmurs with a sensitivity of 85.6% and specificity of 84.4%. When limiting the analysis to clearly audible murmurs in adults, performance improved to a sensitivity of 97.9% and specificity of 90.6%. The algorithm also reported timing within the cardiac cycle, differentiating between systolic and diastolic murmurs. Despite optimizing acoustics for the clinicians, the algorithm substantially outperformed the clinicians (average clinician accuracy, 77.9%; algorithm accuracy, 84.7%.) Conclusions The algorithms accurately identified murmurs associated with structural heart disease. Our results illustrate a marked contrast between the consistency of the algorithm and the substantial interobserver variability of clinicians. Our results suggest that adopting machine learning algorithms into clinical practice could improve the detection of structural heart disease to facilitate patient care.


Assuntos
Aprendizado Profundo , Cardiopatias , Adulto , Humanos , Sopros Cardíacos/diagnóstico , Cardiopatias/diagnóstico por imagem , Auscultação Cardíaca , Algoritmos
9.
J Physician Assist Educ ; 34(4): 339-343, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37678814

RESUMO

INTRODUCTION: Current physician assistant (PA) learners have a clear preference for interactive learning that is vibrantly present in new media technologies. At present, there is a paucity of research regarding use or acceptability of gamification in PA education. The purpose of this study was to examine PA students' experience with, attitudes toward, and outcomes of a gamified cardiac auscultation curriculum. METHODS: Faculty at one institution designed an interactive Mobile App Cardiac Auscultation Curriculum (MACAC). The MACAC incorporates independent and group learning using the Littmann Learning mobile app. Author-created surveys as well as knowledge and auscultation assessment tools were delivered to all students. RESULTS: Most of the students recommended the use of the app for future cohorts and reported confidence to accurately identify normal and abnormal heart sounds. Knowledge and auscultation assessment scores demonstrated proficiency in identification of normal and abnormal heart sounds. DISCUSSION: Gamification research is important because blended learning that incorporates new media technologies with traditional approaches can help overcome the limitations of passive learning environments. This study provides evidence that the use of a mobile app can be an effective and innovative method to teach cardiac auscultation to the 21st century PA learners.


Assuntos
Auscultação Cardíaca , Assistentes Médicos , Humanos , Gamificação , Competência Clínica , Assistentes Médicos/educação , Estudantes
10.
Comput Methods Programs Biomed ; 242: 107777, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37714021

RESUMO

BACKGROUND AND OBJECTIVE: Aimed at the shortcomings of using time interval ( [Formula: see text] ) between the sounds produced by the aortic valve closure (A2) and the pulmonary valve closure (P2) to detect the wide splitting of the second heart sound (S2), which are the [Formula: see text] easily influenced by the heartbeat and not easily distinguished from the fixed splitting of S2 without considering the entire respiratory phase, and from the third heart sound (S3), this study proposes a novel methodology to detect the wide splitting of S2 using an estimated split coefficient of S2 ( [Formula: see text] ) combined with an adaptive number (NAda) of S2. METHODOLOGY: The methodology is orderly summarized as follows: Stage 1 describes the segmentation-based S2 automatic location and extraction. A Gaussian mixture model (GMM)-based regression model for S2 is proposed to estimate the positions of A2 and P2, then an overlapping rate (OLR)-based [Formula: see text] and the [Formula: see text] are estimated, and finally, a NAda-S2 is automatically determined to calculate the statistics of [Formula: see text] and [Formula: see text] . In stage 3, based on the combination of estimated features, the detection of wide splitting of S2 is determined. RESULTS: The performance is evaluated using a total of 3350-period heart sounds from 72 patients, with an overall accuracy of 100%, F1=1 and a Cohen's kappa value (κ) of 1. DISCUSSION: The significant contributions are highlighted: A novel GMM-based efficient methodology is proposed for estimating the characteristics of A2 and P2. A novel OLR-based [Formula: see text] is defined to replace the current state-of-the-art criterion for evaluating the split degree of S2. Considering respiration phases combined with CR are proposed for the high-precision diagnosis of S2 wide split.


Assuntos
Ruídos Cardíacos , Humanos , Auscultação Cardíaca/métodos , Valva Aórtica , Frequência Cardíaca , Tórax
11.
Nurs Clin North Am ; 58(3): 475-482, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37536793

RESUMO

Many healthy children may be found to have a murmur on physical exam. Whether this murmur is discovered at a routine health maintenance visit or as a result of a focused exam on a child with illness, it is just one finding and must be considered in the context of the child's history and other physical exam findings. Murmurs associated with heart defect or dysfunction occur most often in infancy. Most murmurs discovered in children, especially after infancy, between ages 3 to 6 and in young-adulthood, are innocent or benign murmurs and less likely a symptom of cardiac dysfunction or defect.


Assuntos
Auscultação Cardíaca , Cardiopatias , Criança , Humanos , Adulto , Sopros Cardíacos/diagnóstico , Exame Físico
13.
IEEE J Biomed Health Inform ; 27(9): 4240-4249, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37318972

RESUMO

Cardiac auscultation, exhibited by phonocardiogram (PCG), is a non-invasive and low-cost diagnostic method for cardiovascular diseases (CVDs). However, deploying it in practice is quite challenging, due to the inherent murmurs and a limited number of supervised samples in heart sound data. To solve these problems, not only heart sound analysis based on handcrafted features, but also computer-aided heart sound analysis based on deep learning have been extensively studied in recent years. Though with elaborate design, most of these methods still use additional pre-processing to improve classification performance, which heavily relies on time-consuming experienced engineering. In this article, we propose a parameter-efficient densely connected dual attention network (DDA) for heart sound classification. It combines two advantages simultaneously of the purely end-to-end architecture and enriched contextual representations of the self-attention mechanism. Specifically, the densely connected structure can automatically extract the information flow of heart sound features hierarchically. Alongside, improving contextual modeling capabilities, the dual attention mechanism adaptively aggregates local features with global dependencies via a self-attention mechanism, which captures the semantic interdependencies across position and channel axes respectively. Extensive experiments across stratified 10-fold cross-validation strongly evidence that our proposed DDA model surpasses current 1D deep models on the challenging Cinc2016 benchmark with significant computational efficiency.


Assuntos
Doenças Cardiovasculares , Ruídos Cardíacos , Humanos , Sopros Cardíacos , Auscultação Cardíaca
15.
Proc Inst Mech Eng H ; 237(6): 669-682, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37139865

RESUMO

The high prevalence of cardiac diseases around the world has created a need for quick, easy and cost effective approaches to diagnose heart disease. The auscultation and interpretation of heart sounds using the stethoscope is relatively inexpensive, requires minimal to advanced training, and is widely available and easily carried by healthcare providers working in urban environments or medically underserved rural areas. Since René-Théophile-Hyacinthe Laennec's simple, monoaural design, the capabilities of modern-day, commercially available stethoscopes and stethoscope systems have radically advanced with the integration of electronic hardware and software tools, however these systems are largely confined to the metropolitan medical centers. The purpose of this paper is to review the history of stethoscopes, compare commercially available stethoscope products and analytical software, and discuss future directions. Our review includes a description of heart sounds and how modern software enables the measurement and analysis of time intervals, teaching auscultation, remote cardiac examination (telemedicine) and, more recently, spectrographic evaluation and electronic storage. The basic methodologies behind modern software algorithms and techniques for heart sound preprocessing, segmentation and classification are described to provide awareness.


Assuntos
Ruídos Cardíacos , Estetoscópios , Auscultação/métodos , Software , Algoritmos , Auscultação Cardíaca
16.
IEEE J Biomed Health Inform ; 27(8): 3856-3866, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37163396

RESUMO

OBJECTIVE: Murmurs are abnormal heart sounds, identified by experts through cardiac auscultation. The murmur grade, a quantitative measure of the murmur intensity, is strongly correlated with the patient's clinical condition. This work aims to estimate each patient's murmur grade (i.e., absent, soft, loud) from multiple auscultation location phonocardiograms (PCGs) of a large population of pediatric patients from a low-resource rural area. METHODS: The Mel spectrogram representation of each PCG recording is given to an ensemble of 15 convolutional residual neural networks with channel-wise attention mechanisms to classify each PCG recording. The final murmur grade for each patient is derived based on the proposed decision rule and considering all estimated labels for available recordings. The proposed method is cross-validated on a dataset consisting of 3456 PCG recordings from 1007 patients using a stratified ten-fold cross-validation. Additionally, the method was tested on a hidden test set comprised of 1538 PCG recordings from 442 patients. RESULTS: The overall cross-validation performances for patient-level murmur gradings are 86.3% and 81.6% in terms of the unweighted average of sensitivities and F1-scores, respectively. The sensitivities (and F1-scores) for absent, soft, and loud murmurs are 90.7% (93.6%), 75.8% (66.8%), and 92.3% (84.2%), respectively. On the test set, the algorithm achieves an unweighted average of sensitivities of 80.4% and an F1-score of 75.8%. CONCLUSIONS: This study provides a potential approach for algorithmic pre-screening in low-resource settings with relatively high expert screening costs. SIGNIFICANCE: The proposed method represents a significant step beyond detection of murmurs, providing characterization of intensity, which may provide an enhanced classification of clinical outcomes.


Assuntos
Sopros Cardíacos , Ruídos Cardíacos , Humanos , Criança , Fonocardiografia/métodos , Sopros Cardíacos/diagnóstico , Auscultação Cardíaca/métodos , Algoritmos , Auscultação
17.
IEEE Trans Biomed Eng ; 70(9): 2540-2551, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37028021

RESUMO

OBJECTIVE: Development of a contact microphone-driven screening framework for the diagnosis of coexisting valvular heart diseases (VHDs). METHODS: A sensitive accelerometer contact microphone (ACM) is employed to capture heart-induced acoustic components on the chest wall. Inspired by the human auditory system, ACM recordings are initially transformed into Mel-frequency cepstral coefficients (MFCCs) and their first and second derivatives, resulting in 3-channel images. An image-to-sequence translation network based on the convolution-meets-transformer (CMT) architecture is then applied to each image to find local and global dependencies in images, and predict a 5-digit binary sequence, where each digit corresponds to the presence of a specific type of VHD. The performance of the proposed framework is evaluated on 58 VHD patients and 52 healthy individuals using a 10-fold leave-subject-out cross-validation (10-LSOCV) approach. RESULTS: Statistical analyses suggest an average sensitivity, specificity, accuracy, positive predictive value, and F1 score of 93.28%, 98.07%, 96.87%, 92.97%, and 92.4% respectively, for the detection of coexisting VHDs. Furthermore, areas under the curve (AUC) of 0.99 and 0.98 are respectively reported for the validation and test sets. CONCLUSION: The high performances achieved prove that local and global features of ACM recordings effectively characterize heart murmurs associated with valvular abnormalities. SIGNIFICANCE: Limited access of primary care physicians to echocardiography machines has resulted in a low sensitivity of 44% when using a stethoscope for the identification of heart murmurs. The proposed framework provides accurate decision-making on the presence of VHDs, thus reducing the number of undetected VHD patients in primary care settings.


Assuntos
Doenças das Valvas Cardíacas , Humanos , Doenças das Valvas Cardíacas/diagnóstico por imagem , Sopros Cardíacos/diagnóstico , Auscultação Cardíaca , Ecocardiografia , Valor Preditivo dos Testes
18.
PLoS One ; 18(3): e0282337, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36930587

RESUMO

INTRODUCTION: The study aimed to evaluate visualization-based training's effects on lung auscultation during clinical clerkship (CC) in the Department of Respiratory Medicine on student skills and confidence. METHODS: The study period was December 2020-November 2021. Overall, 65 students attended a lecture on lung auscultation featuring a simulator (Mr. Lung™). Among them, 35 (visualization group) received additional training wherein they were asked to mentally visualize lung sounds using a graphical visualized lung sounds diagram as an example. All students answered questions on their self-efficacy regarding lung auscultation before and after four weeks of CC. They also took a lung auscultation test with the simulator at the beginning of CC (pre-test) and on the last day of the third week (post-test) (maximum score: 25). We compared the answers in the questionnaire and the test scores between the visualization group and students who only attended the lecture (control group, n = 30). The Wilcoxon signed-rank test and analysis of covariance were used to compare the answers to the questionnaire about confidence in lung auscultation and the scores of the lung auscultation tests before and after the training. RESULTS: Confidence in auscultation of lung sounds significantly increased in both groups (five-point Likert scale, visualization group: pre-questionnaire median 1 [Interquartile range 1] to post-questionnaire 3 [1], p<0.001; control group: 2 [1] to 3 [1], p<0.001) and was significantly higher in the visualization than in the control group. Test scores increased in both groups (visualization group: pre-test 11 [2] to post-test 15 [4], p<0.001; control group: 11 [5] to 14 [4], p<0.001). However, there were no differences between both groups' pre and post-tests scores (p = 0.623). CONCLUSION: Visualizing lung sounds may increase medical students' confidence in their lung auscultation skills; this may reduce their resistance to lung auscultation and encourage the repeated auscultation necessary to further improve their long-term auscultation abilities.


Assuntos
Estágio Clínico , Estudantes de Medicina , Humanos , Sons Respiratórios , Auscultação , Pulmão , Competência Clínica , Auscultação Cardíaca
19.
Sensors (Basel) ; 23(5)2023 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-36904794

RESUMO

Cardiac and respiratory diseases are the primary causes of health problems. If we can automate anomalous heart and lung sound diagnosis, we can improve the early detection of disease and enable the screening of a wider population than possible with manual screening. We propose a lightweight yet powerful model for simultaneous lung and heart sound diagnosis, which is deployable in an embedded low-cost device and is valuable in remote areas or developing countries where Internet access may not be available. We trained and tested the proposed model with the ICBHI and the Yaseen datasets. The experimental results showed that our 11-class prediction model could achieve 99.94% accuracy, 99.84% precision, 99.89% specificity, 99.66% sensitivity, and 99.72% F1 score. We designed a digital stethoscope (around USD 5) and connected it to a low-cost, single-board-computer Raspberry Pi Zero 2W (around USD 20), on which our pretrained model can be smoothly run. This AI-empowered digital stethoscope is beneficial for anyone in the medical field, as it can automatically provide diagnostic results and produce digital audio records for further analysis.


Assuntos
Ruídos Cardíacos , Doenças Respiratórias , Estetoscópios , Humanos , Auscultação Cardíaca , Auscultação , Pulmão , Sons Respiratórios/diagnóstico , Inteligência Artificial
20.
BMJ Open ; 13(3): e068121, 2023 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-36963797

RESUMO

OBJECTIVE: The objective of this study was to determine the diagnostic accuracy in detecting valvular heart disease (VHD) by heart auscultation, performed by medical doctors. DESIGN/METHODS: A systematic literature search for diagnostic studies comparing heart auscultation to echocardiography or angiography, to evaluate VHD in adults, was performed in MEDLINE (1947-November 2021) and EMBASE (1947-November 2021). Two reviewers screened all references by title and abstract, to select studies to be included. Disagreements were resolved by consensus meetings. Reference lists of included studies were also screened. The results are presented as a narrative synthesis, and risk of bias was assessed using Quality Assessment of Diagnostic Accuracy Studies-2. MAIN OUTCOME MEASURES: Sensitivity, specificity and likelihood ratios (LRs). RESULTS: We found 23 articles meeting the inclusion criteria. Auscultation was compared with full echocardiography in 15 of the articles; pulsed Doppler was used as reference standard in 2 articles, while aortography and ventriculography was used in 5 articles. One article used point-of-care ultrasound. The articles were published from year 1967 to 2021. Sensitivity of auscultation ranged from 30% to 100%, and specificity ranged from 28% to 100%. LRs ranged from 1.35 to 26. Most of the included studies used cardiologists or internal medicine residents or specialists as auscultators, whereas two used general practitioners and two studied several different auscultators. CONCLUSION: Sensitivity, specificity and LRs of auscultation varied considerably across the different studies. There is a sparsity of data from general practice, where auscultation of the heart is usually one of the main methods for detecting VHD. Based on this review, the diagnostic utility of auscultation is unclear and medical doctors should not rely too much on auscultation alone. More research is needed on how auscultation, together with other clinical findings and history, can be used to distinguish patients with VHD. PROSPERO REGISTRATION NUMBER: CRD42018091675.


Assuntos
Auscultação Cardíaca , Doenças das Valvas Cardíacas , Adulto , Humanos , Ultrassonografia , Auscultação , Ecocardiografia , Doenças das Valvas Cardíacas/diagnóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...